top of page

Introduction to the Hughes Laboratory

  David is a Senior Lecturer in Anatomy, PI of the Hughes Laboratory, and a

member of the University of Glasgow's Spinal Cord Group. He gained his

BSc (Honours) in Anatomy at the University of Liverpool (1993), and his PhD in

Neuroanatomy at the University of  Wales, Cardiff (1997), studying spinal cord

circuitry under the supervision of Alan Watson. He then worked as a post-

doctoral research assistant at University College London studying neuronal

connectivity in the CA1 region of the hippocampus (1997-2000), before joining

the University of Glasgow in 2000. David was appointed as a lecturer in 2009.

 

                       David's staff page at the University of Glasgow

                       (publications, grants and additional information)  

   

  He explains, "I am one of five PIs at the University of Glasgow's Spinal Cord

Group. My research aims to improve our understanding of the complex

neurocircuitry in the spinal dorsal horn, an area of critical importance in allowing

us to perceive the sensations of temperature, touch, pain, and itch. I use a

combination of anatomical and electrophysiological approaches in both human

and rodent tissue to identify individual cell populations, and determine how their

activity influences our ability to perceive different sensations."

 

  The main focus of his work is in collaboration with Brett Graham (University of Newcastle, Australia). David adds, "Together, we have identified populations of cells that influence how we perceive touch and pain sensations, and believe these cells play a critical role in the development of tactile allodynia and mechanical hyperalgesia. These studies help us gain insights into how the nervous system prioritises and  processes 

sensory information, and are aimed at developing improved treatments to manage chronic pain states."

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  This animation outlines a spinal microcircuit made up of inhibitory interneurons that express the calcium binding protein parvalbumin (PV), excitatory interneurons known as vertical cells, and projection neurons that relay painful information from the spinal cord to the brain. Under normal conditions, PV interneurons play a key role in controlling the activity of vertical cells and this helps segregate neuronal activity within touch circuits from those involved in pain perception. We have found that after peripheral nerve injury, the degree of inhibition mediated by the PV interneurons is reduced. Under these pathological conditions,  activity normally confined to touch circuits can now be relayed to pain circuits through vertical cells, leading to touch-evoked pain (tactile allodynia). Work featured in this animation was funded by grants from the BBSRC (BB/J000620/1 and BB/P007996/1) and NHMRC (grants 631000 and 1043933). Links to published papers from this project can be found here. For more animations of spinal circuits, and video abstracts of work published from the Spinal Cord Group.

 

Key words:
Spinal Cord; Circuit mapping; Anatomy; Electrophysiology; Transgenic mice; AAVs;
Chemogenetics; Optogenetics; Behaviour; Confocal microscopy; Electron microscopy; Chronic pain; Presynaptic inhibition; Postsynaptic inhibition; Allodynia; Hyperalgesia

Hughes Laboratory

Supported by the BBSRC, the Wellcome Trust, NC3Rs and HMRC (Australia)

bottom of page